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Viscoelastic behaviour of a unidirectional 
fibre reinforced plastic 

EIRYO S H I R A T O R I ,  KOZO I K E G A M I ,  T O S H I O  H A T T O R I  
Research Laboratory of Precision Machinery and Electronics, 
Tokyo Institute of Technology, Tokyo, Japan 

The orthogonal linear viscoelastic constitutive equation is given by the Laplace transform 
domain elastic constants which are calculated from the law of mixture and a structural 
unit cell. Non-linear constitutive relations in high stress regions are derived by considering 
non-linear properties of the components and the stress redistribution in the matrix on 
account of debonding between fibre and matrix. A linear failure criterion and a fracture 
criterion are also investigated theoretically. Experimental works are conducted for 
uniaxial and biaxial specimens of cold-drawn copper fibre-epoxy resin composite having 
various fibre volume fractions and fibre directions. Fairly good agreements are observed 
between the calculated and experimental results. 

1. Introduction 
It is well known that the fibre reinforced 
composite material shows a considerable 
mechanical anisotropy depending on the orienta- 
tion and volume fraction of fibres. From this 
variability of anisotropy by fibre reinforcement, 
it is possible to choose the optimal reinforce- 
ment from the view point of material efficiency 
of the composite material for the prescribed 
design condition. For optimal design by use of 
composite material, it is necessary to find the 
constitutive relation of composite material. 
Although many papers have reported on this 
problem, there are few theoretical and experi- 
mental results for the constitutive relation 
from the start of deformation to the fracture of 
the composite. Moreover, since the results are 
often given by complicated expressions or 
numerical calculations with digital computers, 
they are not always convenient for stress analysis 
of the structures. 

It is a main object of this paper to find the 
simple and approximately precise expression of 
constitutive relation which is available for the 
design purpose. Theoretical analyses are made 
on the linear and non-linear viscoelastic aniso- 
tropic behaviour, linear viscoelastic failure and 
fracture criteria for uniaxial fibre reinforced 
composite. The validity of the analytical results 
is confirmed by comparison with the experi- 
mental results. 

�9 1974 Chapman and Hall Ltd. 

2. Linear viscoelastic behaviour 
Let us assume that the matrix is a time-depen- 
dent material and the fibres embedded in the 
matrix are elastic materials. The macroscopic 
property of the composite will then be time 
dependent, and it will show a linear viscoelastic 
behaviour within a low strain region. It is well 
known that a linear viscoelastic problem can be 
solved by the correspondence principle as an 
associated elastic problem in the Laplace 
transform domain. Accordingly, the orthotropic 
linear viscoelastic constitutive equation for the 
composite composed of linear viscoelastic 
matrix and parallel elastic fibres can be deter- 
mined by the Laplace transform inversion of 
associated orthotropic elastic constants. 

The constitutive equation in the Laplace 
transform domain of an orthotropic elastic 
plate, in the case of plane stress condition where 
the stress co-ordinate axes coincide with the 
principal axes of anisotropy, is defined as 
follows: 

(gn~ [l/E:: l/E:2 0 ) ['_8:1'~ 
e_../ = ~Io/E.. I/E., 0 ~-%"1 (1) 
712! 0 1/G:2 \::~/ 

where subscripts 11 and 22 show the directions 
parallel and perpendicular to fibres respectively 
(cf. Fig. 1), and the bar indicates the 
Laplace transformation. For the case where the 
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Figure 1 Co-ordinate system of unidirectional fibre 
reinforced plate. 
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Figure 2 Structural unit cell for the unidirectional fibre 
reinforced composite of rectangular array. 
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fibre direction makes an angle 0 with one of the 
stress co-ordinate axis, X, the constitutive 
equation can be derived from the transformation 
of the co-ordinates in Equation 1. The elastic 
compliance matrix of Equation 1 corresponds to 
the viscoelastic compliance matrix in the 
physical domain. The associated elastic con- 
stants E~I, E~,  E~2, G12 are determined from 
elastic moduli of the fibre (E~) and the matrix 
(T~) in the Laplace transform domain, fibre 
volume fraction (Vf) and geometrical arrange- 
ments of fibres. 

2.1. E .  

According to many analyses and experiments 
[1-4] the "law of mixture" can be used for the 
longitudinal modulus with sufficient exactness, 
i.e., 

Ex~ = VfE~ + (1 - Ve)Em. (2) 

2.2. E,~ 
For the Poisson's ratio v12 the validity of the law 
of mixture is verified also in [2, 4], hence 

J~ll g f E f  + (t - gdEm 
E I ~  . . . . .  , (3 )  

where ~ and ~m are the Poisson's ratios of fibre 
and matrix in the Laplace transform domain 
defined by 

~mt ~ft 
V m  - , ~ f  . . . .  ( 4 )  

~m ~ 

Here em and em, denote the strains in the direc- 
tions parallel and perpendicular to the loading 
direction under uniaxial tensile creep of matrix 
respectively, and Ef and eft are those for the fibre. 

2.3.--ff22 
Many results [4-15] have been obtained for the 
transverse modulus (E~2), but the results are not 
always convenient for the stress analysis of the 
structures as they are given by complicated 
expressions or numerical tables. A simple and 
approximately precise expression of the trans- 
verse modulus is derived from assuming a 
structural unit cell as shown in Fig. 2 for a 
rectangular array composite. Fig. 2a shows a 
cross-section of the composite. The structural 
unit cell is the rectangular prism of sides 
a x b having a fibre of diameter d in the centre, 
as shown by the dotted lines in Fig. 2a. The unit 
cell is divided into four regions, and the strain 
distribution in each region is assumed to be 
approximately uniform. These four regions are 
denoted as I, II, III and IV as shown in Fig. 2b. 
As the cross-sectional area of the region IV must 
be equal to that of fibre, i.e., 

7rd z 
- -  = c ~ and Vf = c2/ab 
4 

For the tensile loading in direction 22, the 
equilibriums of stress among these regions are 
assumed as follows' 

(i) the stress of direction 22 in region I is 
equal to the average stress of regions II and IV, 
i.e., 

2e a -  c 
a +----~ 8z2~v+ S--~-c ~22I~ = ~2=~ ; (5)* 

(ii) the average stress of regions I and III is 
equal to the macroscopical stress (6~) of  
direction 22, i.e., 

*The stresses in regions I, tI, III and IV are denoted by o x, ~i~, dII and ~Iv, respectively. 
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a + c _  a - c  In , 
2a 0.22I + ~ 52z = 52`, " (6) 

(iii) the macroscopical stress of direction 11 is 
zero, i.e., 

(a + c)(b - c) b(a ~_ c) 
2 5ill + z 511111 

+ c2511 Iv = 0.  (7) 

In Equation 7, the stress of region II (aal It) is not 
taken into consideration because of its small 
value compared with the stresses in other regions. 

For the above mentioned loading, the com- 
patibility of the strain among the regions are 
assumed as follows: 

(i) the strains of direction 22 in regions II and 
IV are equal because of the perfect bonding 
between fibre and matrix, i.e., 

i22 II  = ~22 I v  ; (8)  

(ii) the strain of direction 22 in region III is 
equal to the average strain of regions I, II and IV 
and correspond to the macroscopic strain (~22), 
i.e., 

b - c  c = ~ m  - " (9) 
b g22I + D iz2II = E22 ' 

(iii) the strains of direction 11 in regions I, III 
and IV are equal to each other, i.e., 

Eli I = Eli IIl= Ell IV , (10) 

where the strain of direction 11 in region II 
(g~ iI) is neglected for the same reason stated for 
Equation 7. From Equations 5 to 10 the trans- 
form domain transverse modulus E22 is given 
by 

f E2Z - -  O'22_ - -  E m  1 
s 

where 

10C 
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so 

tB 

2. ~ 

/ 
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Figure 3 Comparison of calculated results from Equation 
2 and from Whitney [2] and Heaton [12]. 

2.4, G12 
For the longitudinal shear loading, the following 
equations of the stress equilibrium and strain 
compatibility among the regions in the unit celt 
can be derived from the same assumptions as in 
the case of E22, i.e., 

a W c  a - - c  1 R + 2 (1 - -  Ym 2) 
a - - 2 -  - ( t l )  

+ R EmE__~ (a + C)c 2(b - c) + EmEf__ (ac 2- c) + 2 (1 - Vm 2) 

1 2cEf + (a - c)Em]-fff ~ + - -  
R =  

c t (a + c)Em ~ ( 1  1 (a + c)(b - c)) 
- ~ 1 - 2eE~ + ( d :  c)Em/\F~m + E-----f 2c 2 

For Ef >> Era, R is reduced to R = b/(b - c) and 
then, 

( 

E~z -- Em ~ 1  + 

L 

c(a + c) ] 
1 + a - ~ c ) ! 1  -~VmZ) , _ _  _ ~>" 

(12) 

1 - -  Ym 2 

Em 

v m E m  

2c a -  c 
a -t- C ~12IV + a -l- C TI2II "C12I' 

a + c  a - c  
2a ~12 I + ~ ~12 m =  ~12, 

~12 II  ~ ~12 IV 

(13) 

(14) 

(15) 
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b - c c = 912 I~I value of the normal stress or the shear stress on 
b 9121 4 - /~  91211 = ~7~2. (16) matrix has usually been given by the critical 

the bonded surface, or by applying the aniso- 
From Equations 13 to 16, the transform domain tropic yield criterion proposed by Hill. But in the 
longitudinal shear modulus (G~z) is given as former case, the coupling effect of the normal 

G12 = "r,__2 = Gm (2ab - ac + c 2) (2c Gf/Gm + 17 - c) + c(a - c)(a + c) (17) 
yl~ 2a{(b - c) [2c(Gf/Gm + a - c] + c (a + c)} 

where Gf and Gm are the transform domain 
shear moduli of the fibre and the matrix res- 
pectively. 

The linear viscoelastic constitutive equation 
can be derived from the Laplace transform 
inversion of Equation 1 for which the transform 
domain moduli En, E12, E22 and G12 a r e  sub- 
stituted. 

The calculated results of the moduli for square 
array (a = b) by Equations 2, 3, 11, 12 and 17 are 
compared with those by Whitney [2], Halpin 
[4], Tsai [9] and Heaton [12] in Figs. 3 to 6, 
where Gr/Gm = 120, ~f = 0.20, ~?m = 0.35 are 
assumed. Pretty good coincidences are observed 
between the authors' calculations and the other 
investigators' results. 

3. Linear viscoelastic failure criteria 
The linear viscoelastic failure criteria are 
determined from the following two conditions, 
(1) the proportional limit of the fibre, (2) the 
bonding failure limit between the fibre and the 
matrix. It depends on the angle 0 between the 
direction of the fibre and that of the applied 
stress which limit should be adopted to deter- 
mine the failure criterion. 

E 
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I 
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~0 
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100 / 

50/--/ , , , , 

0 0.2 04 0.6 ~8 1.0 

Figure 4 Comparison of calculated results from Equation 
3 and from Whitney [2] and Heaton [12]. 

3.1. The cri terion determined from the f ibre 
proport ional l imit  

The stress of the composite in the longitudinal 
direction at the proportional limit of the fibre 
is given by using the law of mixture as follows: 

cq~* = Vf(rf* + (1 -- V~)~m' (18) 

where 0.r* is the proportional limit of the fibre 
and 0.m' is the stress of the matrix at the pro- 
portional limit of the fibre. For uniaxial tension 
at an angle of 0 to the fibre direction, the linear 
viscoelastic failure stress, (rx*, becomes 

~rx* = 0.11"/cos~0 
= {Vf0"~* + (1 - VO~m'}/cosZO. (19) 

3.2. The criterion determined from the 
bonding failure limit 

The bonding failure limit between fibre and 

and shear stresses is neglected, while the 
physical meaning of debonding is not considered 
in the latter. To include the coupling effect in the 
criterion, the bonding failure is assumed to 
occur when the effective resultant stress 

O'eff = 4[(o'22I) 2 -t- ('rl2I) 2] (20) 

on the bonding surface reaches a certain critical 
value,  (reff*. The values of ~r221 and ~-121 in 
Equation 20 are derived by using the unit cell 
of Fig. 2b as follows: 

f c ( a - c ) / ( b - c )  } 
0"221- = 1 + 2ab - ac + c 2 + Em__ __2a2b 52~ , 

b - c Ef c 2 
(21) 

and 
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~ s  I = c(a  + c) ~ s .  
a + c + (a - c) b - C + 2 c ( C d C ~ )  + a _  c 

(22) 

For Ef >> Em and G~ >> Gm, it may be allowed 
to assume Em/Ef  and Gf/Gm to be constant and 
independent of the time. Then the stress con- 
centration factors /(I and Ks in the physical 
domain, which are defined by/(1 = (rs~I/a.) 2 and 
K2 = ~'l~I/%s, become 

c ( a -  c)/(b - c) (23) 
K1 = 1 + 2ab - ae + c s Em2aSb ' 

"Jt- ~ - -  

b - c  Ef c 2 

K 2 ~ -  

2ab 

a -  c + (a - c) { b  - c +  
c(a  + e) 

2c(Gf/Gm) + a - c 

(24) 

z,0 

30 

E 20 

10 

0 0.2 0-4 06 0.8 10 
Vf 

Figure 5 Comparison of calculated results from Equations 
11 and 12 and from Halpin [4], Tsai [9] and Heaton 
[121. 

For K~ - K~, these can be put /(1 = K s = 
(KI + Ks)~2 =__ K. From this approximation the 
linear viscoelastic failure stress ~x* for uniaxial 

tension at an angle of 0 to the fibre direction is 
given by 

~x* = aef f*/K" sin0. (25) 

4. Non- l inear  v iscoelast ic  behav iour  
4.1. Constitutive equation in the presence of 

debonding between fibre and matrix 
Let us assume the non-linear viscoelastic con- 
stitutive equation in the presence of debonding 
in the following form, 

(E n = C u ( a u ,  t) + C~2((r2~, t) 

~es~/ C~a(a11, t) + Cs2(~ss, t) (26) 
L71~ C33(~-1s, t) 

where 6'11, Cls, Csl, Css and C33 are compliance 
functions of stresses and time. For  the longitu- 
dinal tensile loading (crn), both fibre and matrix 
show the non-linear behaviour before fracture 
of the composite; the non-linear behaviour of 
the composite in high stress region will then be 
predicted by the non-linear behaviour of  fibre 
and matrix. For both transverse loading (~22) 
and shear loading (~12), the composite fracture 
will occur in a low stress level because of the 
stress concentration at the matrix-fibre boun- 
dary. Hence, the deformation modes of fibre and 
matrix may be linear until fracture of the 
composite, and the compliance functions Cls, 
Css and C33 will be given by solving elastic 
problems in the transform domain. 

On the assumption that the fibre length is 
infinite the contact area between the fibre and 
the matrix may also be regarded as infinite, and 
the deformations in direction 11 of the fibre 
and the matrix will show the same value in spite 
of debonding propagation between them. Hence, 
the effect of debonding propagation is neglected 
in determining the compliance functions Cu  and 
Cls. 

4.1.1. C, (~,, t) 
The stress-strain relations are expressed as 
follows: for the fibre, 

f 0 < fit" < O'[* e l l  I = ~'[/(O'f) , 
~*  < ~f < ~( '* ~al ~,(~f) + ~(,(~f), (27) 

and for the matrix, 
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Figure 6 Comparison of calculated results from Equation 
17 and from Halpin [4], Tsai [9] and Heaton [12]. 

f 0 < O'm < o-m* emi l  = em'(Crm, t ) ,  

o-m* < O'm < O'm** Emil Em'(o-m, t )  + Em'r(o'm,t) 
(28) 

In Equations 27 and 28 the asterisks (*) and (**) 
denote linear failure stress and fracture stress, 
respectively, and the primes (') and (") linear 
strain and non-linear strain, respectively. The 
macroscopic strain ( q 0  and stress (all) in the 
longitudinal direction are given by 

{E11 = Efll = E m l l ,  (29) 
O-11 Vf~f + (1 - V 0 ~ m .  

The compliance function (C~0 can be deter- 
mined from the relation q l  = Cll (e11, t) by using 
Equation 29. 

4.1.2. C21 (o-,, t) 
The longitudinal stress-transverse strain rela- 
tions are expressed as follows: 
for the fibre, 

0 < af < a~* E~2~ = - v~E((o-f), 

(30) 

and for the matrix, 
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f 
0 < o-rn < o-m* Ern22 = --  vm( t ) em '  (o-re' t )  

O'm* < o-m < o-m e*  Era22 V(t)Em t (o-m, t )  
1 "~ t ) .  - -  ~Em tO'm, 

(31) 

In Equations 30 and 31 the Poisson's ratios of the 
fibre and the matrix in the non-linear region are 
assumed to be �89 The macroscopic transverse 
strain (e22) and longitudinal stress (~11) are 
written by using law of mixture as 

f E22 = VfEf22 -]- (1 -- Vf)Em22 
o-ll v~o-f + (] - V00-m. ' (32) 

The compliance function (C20 can be deter- 
mined from the relation e22 = C21(~1~, t) by using 
Equation 32. 

4.1.3. C~2 (%2, t) 
As mentioned above, it is assumed that in the 
transverse loading the composite fracture occurs 
before linear failure of its components and the 
longitudinal strains of the fibre and the matrix 
are equal to each other. Then the compliance 
function (C~2) can be calculated from 

~22 
C12(c~2, t) - E12' (33) 

where Ea2 is given by Equation 3. 

22 
1 

I 

l./ -~-  

- - - Q  - 33 

i i 

7 - C l ~  

Figure 7 Structural unit cell for the unidirectional fibre 
reinforced composite where debonding between fibre 
and matrix occurs. 

4.1.4, C22 (%~, t) 
For the calculation where debonding between 
fibre and matrix occurs, the rectangular struc- 
tural unit cell of Fig. 7 is used. The stress fields 
in the regions I' and II' of the matrix and those 
in the fibres are assumed to be uniform. When 
debonding occurs, the fibre acts only as an 
insert and does not constrain the matrix defor- 
mation in the direction of 22. Hence, the effective 
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modulus of the composite in the direction of 22 
can be calculated from the matrix modulus as 
follows: 

E22' = (1 -- c/a)Em. (34) 
The strain compatibility condition under the 
transverse loading is satisfied by assuming that 
the longitudinal strains of fibre and matrix are 
equal to the macroscopic longitudinal strain 
(g11), i.e., 

Crml l  YmO'$2 (71"11 

q l  Em 22 Ef E ' - - ' ( 3 5 )  

where 5m~t and 6f~ denote the longitudinal 
stresses of  matrix and fibre which arise by the 
constraint in direction 11 between fibre and 
matrix. The equilibrium condition between these 
stresses is 

V f S f l  1 + (1 - g f ) S m l l  = 0 .  (36) 
The transverse strain, i22, for this case is given 
by 

cr 22 vm(rm 11 
e22 = E'-~22' -- Em (37) 

Using Equations 34 to 37 the transverse modulus, 
,, 

z2, is obtained from 

E 2 2  tt _~ ~ 

E22 

= Em 1 - (c/a) 
VfE'~ (38) 

1 - Vm ~ ~VfE~ + (1 -- V0Em 

For E~ >> Era, E2z" is simplified to 

_ ,, 1 - ( c / a )  Em (39) 
E22 - 1 - -  ~m - 7  ' 

and C ~ ( e ~ ,  t) is calculated from 

C~(a~ ,  t) = 5~/E~('  , (40) 

with Equation 39. 

4.1.5. C~ (%, t) 
Similar to the case of E22', the effective shear 
modulus (G~2') is determined as 

G~'- - 71~z12 _ [1 - (c/a)]CJm (41) 

and then 

C33(~-12, t) = "~2/Ca2' (42) 

4.2. Non-linear constitutive relationship in 
considering the propagation of 
debonding 

The stress-strain curve in the case of perfect 

Y,o" 

V'C(J) F"(C~) 

/ /  i 
Strain 

Figure 8 Stress-strain relations in the cases of perfect 
bonding and debonding. 

bonding is schematically shown in Fig. 8 by 
F'(e), and that for complete debonding by 
F"(cr), respectively. The values of  the debonding 
initiating stress and the fracture stress are 
indicated by e* and e**, respectively. Since the 
debonding is considered to occur locally and 
not to propagate instantly throughout the 
composite at the debonding initiating stress ~*, 
the jump of the stress-strain curve from F'(~) 
to F"(cr) will not be observed at this stress. Hence, 
it is considered that the stress-strain relation 
deviates gradually from the F ' (e)  curve with 
increase of  the debonding and finally meets the 
F"(e) curve at fracture stress e** as shown by the 
dashed line in Fig. 8. On the assumption of the 
linear combination of F'(cr) and F"(~), the con- 
stitutive relation in considering the propagation 
of debonding is represented as follows: 

f 0 < c~ < a* e = F ' (a)  
(3"** - -  (7 

l ~ *  < c~ < or** - F'(cQ 
E O '**  - -  (7* 

(3" - -  O'* 

+ or** - cr* F"(cr) 

5. Fracture criteria 
The fracture conditions are given by the assump- 
tion that the composite fracture occurs when 
either the longitudinal stress or the maximum 
effective resultant stress of  normal and shear 
stresses on the plane parallel to the fibre reaches 
its critical value similar to the case of the linear 
failure criterion. 

5.1. Fracture by longitudinal stress 
The longitudinal strength of unidirectional 
brittle fibre reinforced composite can generally 
be represented by the following law of mixture: 

f 
0 <  Vf < Vfe or11** = ( 1 -  Vf)em**, (43) 

* *  V f o f  * *  V~e < V~< 1 ~11 = 
+ (1 - Vf) am", (44) 
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w h e r e  (rm" is the matrix stress corresponding to 
the fibre fracture strain, and Vfe is the critical 
fibre volume fraction expressed by 

Vie = (0`m** - -  O'm")/(o'f **  j r  O'm** - crm") �9 

For the ductile fibre, however, the bonding 
between the fibre and the matrix prevents 
"necking" of fibre and, hence, the tensile test 
result of a single fibre cannot be used as the 
fibre behaviour in the composite. For the ductile 
fibre composite, Mileiko [16] has proposed the 
following modified equation: 

(ru** = VfAkrt** Jr (1 - V~)A"0`m**, (45) 

where A' and A" are the functions of fibre volume 
fraction (V~). Actual applied results of Equation 
45 for the ductile fibre composite show an almost 
linear relation with Vf. Therefore, the longitu- 
dinal fracture criterion is expressed approxi- 
mately by 

o"11"* : Vf0`f** Jr (1 - Vf)O'm** . (46) 

5.2. The fracture by the maximum effective 
resultant stress of normal and shear 
stresses 

The effective resultant stress of normal and shear 
stresses in the structural unit cell of Fig. 7 is 
maximum in region II'. Hence, denoting the 
critical value of effective resultant stress as Cre~**, 
the fracture condition is given by 

%/[(O'22]J[f) 2 Jr (712137') 2] -~- O'efI** . (47) 

By defining the stress concentration factor, K', 
a s  

K ' =  a'22H' - "r1~II' = a / ( a  - c) 
O'22 "r12 

the fracture stress (0`x**) in the uniaxial tension 
with fibre orientation (0) is expressed as follows: 

a x * *  = ( r e f f * * / K ' "  sin0 = (r2~**/sin0. (48) 

6. E x p e r i m e n t a l  p r o c e d u r e s  a n d  r e s u l t s  

The tests under creep, relaxation, constant 
strain-rate and constant load rate conditions are 
conducted by the biaxial tensile testing machine 
having a closed loop feedback control system. 
The temperature during the experiment is kept 
at 30~ by using an environmental chamber 
attached to the testing machine. A schematic 
diagram of the biaxial tensile testing apparatus 
with various accessories is shown in Fig. 9. 

The material used in the experiments is the 
composite of epoxy resin reinforced unidirec- 
tionally by cold-drawn copper wires of 0.8 mm 
diameter. This composite is produced by pouring 
the epoxy resin on the copper wires stretched at 
equal intervals on the glass plate and curing at 
60~ for 2 h. The volume fraction of the wire is 
controlled by changing the intervals between the 
wires. Test specimens are cut from this com- 
posite plate. The uniaxial tensile specimen has a 
parallel part of 120 mm length and 50 mm 

I ' . . . . . . .  -~'-~ . . . . .  V" . . . . . . . .  ] . . . . . . . . . .  " ' . > ~ . - F -  , '~}~He~er 

, ,  

, ,, - _1 / 

L ' ; ;  :-7 
.......  iiii i ' ' 

Ternp Ox ~ (Ty Ey Ruid ~ I--~raulJc circuit 

recorder Power source . . . . . .  Electric circuit 

Figure 9 Schemat i c  d i ag ram of  tes t ing system.  
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Figure 10 Stress-strain relations under constant strain- 
rate. (0 = 0 ~ 

breadth, and the biaxial tensile specimen has a 
square region of  100 m m  • 100 m m  in the 
central part. 

Experimental results are given in Figs. 10 to 

16. Fig. 10 shows longitudinal stress-strain 
relations under the constant  strain-rate tensile 
tests for copper  wire, epoxy resin and their 
composites with various volume fractions. Figs. 
11 and 12 are creep-recovery test results o f  the 
composites with fibre volume fraction V~ = 0.13 
and 0.25, respectively. The relation between the 
creep compliance and the stress level is plotted 
in Fig. 13 f rom the creep test results o f  the 
specimen with Vf = 0.13 and 0 = 30 ~ . The 
linearity can be clearly seen in low stress levels 
while non-linearity becomes remarkable for high 
stress levels. Figs. 14 and 15 show the constant  
load rate tensile test results o f  the composites 
with V~ = 0.13 and Vf = 0.25, respectively. 
Results o f  the biaxial tensile tests under constant  
stress ratios are given in Fig. 16, where the 
vertical ordinate expresses the equivalent stress 
of  Mises type. 

7. The  comparisons betwean theoretical 
and experimental  results 

From the results o f  the constant  strain-rate 
tensile tests of  fibre and matrix and the creep 
test of  matrix, the creep compliances and 
Poisson's  ratios o f  fibre and matrix are found as 
follows: 
Jr(t) = 1/11000 m m  ~+ kg -1 
vf(t) = 0.33 
Jm(t) = 0.00363 - 0.00025e -2.~ 

_ 0.00050e--0.0+~nt m m  2 kg-1 
Vm(t) = 0.355. 

CoL x Y 
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15 + 
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T i m e  t ( ra in)  

(V,=0-13) C r e e p - r e c o v e r y  test  

Figure 11 Creep-recovery curves (Vf = 0.13). 
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Figure 12 Creep-recovery curves (V~ = 0.25). 
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Figure 13 Creep compliance versus stress for various times (V~ = 0.13, 0 = 30~ 

Here the creep compliance of fibre is given as the 
constant value since the time-dependency in the 
deformation of the fibre is considered negli- 
gible, and times scale in the creep compliance are 
indicated by minutes. Then the transform domain 
elastic constants for fibre and matrix become 

Ef = l / S  Jr(t) = 11000 

~ = SJf( t )v~(t ) /S  Jr(t) = 0.33 

C-r = Er/2(1 + ~) = 4135 

Ern = 1 /SJm( t )  
(S  + 2.0) (S + 0.046) 

= 347 
(S § 2.17) (S 4- 0.053) 

600 

(kg mm -z) 

(kg mm -2) 

(kg mm -2) 

Vm = S J m ( t ) v m ( t ) / S J m ( t )  = 0.355 

(~m = Em/2(1 4- Vm) 
= 128 ( S + 2 . 0 ) ( S +  0.046) 

(S 4- 2.17) (S + 0.053) 
(kg mm-2). 

The constitutive relations calculated by using 
these transform domain elastic constants and 
geometrical parameters a, b and e are shown by 
the lines in Figs. 11, 12, 14to 16. The calculated 
stress-strain relations give essentially straight 
lines in the low stress region and show good 



VISCOELASTIC BEHAVIOUR OF A UNIDIRECTIONAL FIBRE REINFORCED PLASTIC 
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Figure 14 Stress-strain relations under constant stress rate. (Vf = 0.13, da/dt = 0.01 kg mm -a sec -1) 

agreements with the experimental results. ]-he 
linear viscoelastic failure stress is experimentally 
defined as the stress point where the gradient of  
stress-strain curve begins to change abruptly. 
The relations between the linear viscoelastic 
failure stress and the fibre orientation are mea- 
sured for two kinds of  uniaxial tensile test 
specimens of Vf = 0.25 and Vf = 0.13, and 
compared with their calculated results by Equa- 
tions 18 to 20 and 25 as shown in Fig. 17. Fig. 
18 shows the comparison between the observed 
and calculated values of  the linear failure stress 
for the biaxial tensile tests. In these comparisons, 
the following values are used for the propor- 
tional limit of the fibre and the effective resultant 
stress at the debonding initiation: 

ar* = 27.0 k g m m  -2, 

Oeff* -= 1.14 k g m m  -2. 

To calculate the stress-strain relationship of 
the composite in the non-Iinear region, the 
stress-strain curves of  fibre and matrix are 
represented by the following forms: 
for the fibre, 

0 < af < 27(kg mm -2) 

f/ x O'f 
efl I = ~f tO'f) = Ef ' 

L • f 2 2  = - -  l'fe'f'(O'f) 
~fo~f 

El' 
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TABLE I Explanation of stress levels represented by 
lines. 

Debonding i n i t i a t i on  s t ress.  

Frac ture  stress d e t e r m i n e d  
f rom the  criterion(5-2.) 

Af th is  s t ress the  f i b r e  reaches  
. . . . . . . . . . .  its propor t iona l  l imit  

Frac ture  s t ress  de te rm ined  . . . . .  ~x . . . . . .  
f r o m  the  c r i te r ion  ~5.1). 

27 < ~f < 43(kg m m  -2) 

f Efll = Eff(O'f) Jr- Ef't(O'f) 

t crf 43 - cr~ = ~f - 0.00105 log 1------6- 

I _ vr~ 43 - err 
L. Ef  + 0.00053 log 1 ~  

and for  the matrix,  

0 < ~ m  < 3 . 5 ( k g m m  2) 

- ! I ~ O'fit 
E I n l l  = e m  tO 'm,  t) = E m '  

- -  - -  V m ( t ) , m  ( ~ f i t ,  t )  ~m22 - ~-- rr--'" _ 

3.5 < r < 6.3 (kg mm -2) 

I 
L 

vf i t  Crm 

Em 

6 . 3  - -  O'fit 
= Em'(afit, t) - 0.0022 log 2.8 

~m22 = -- vfit(t)em'(crm, t) -- �89 r t) 
6.3 -- ~rm 

= -- vfit(t)Em'(Crm, t) + 0.0011 log 2.8 

The relations gwen by the above equations are 
shown in Fig. 19 by the solid lines. In these 
relations, the tensile strength of  copper  wire 
without  necking is assumed to be el**'  = 43.0 
kg m m  -2. The calculated results o f  the stress- 
strain curves in non-linear regions are shown in 
Figs. 14 to 16 by the dashed lines. Figs. 20 and 
21 show the compar isons  between the calculated 
and experimental  results for  the variat ions of  
the unidirectional tensile strength with respect 
to the fibre volume fractions and fibre orienta- 
tions, respectively. Fig. 22 shows the compar ison 
for  the biaxial tensile strength. In these com- 
parisons an experimental  average value ~ert** 
= 3.20 kg m m  -2 is adopted for  the max imum 
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Figure 15 Stress-strain relations under constant stress 
rate. (V~ ~ 0.25, dc#dt = 0.01 kg mm 2 sec-1) 

effective resultant stress eels**. The calculated 
results o f  linear failure and fracture stress levels 
are shown in Figs. 14 to 16 by the thin lines 
(cf. Table I). The changes of  the fracture 
stress with respect to fibre volume fractions and 
fibre orientat ions are calculated by Equations 46 
and 48, and compared  with the experimental  
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Figure 17 Comparison of calculated and experimental 
linear viscoelastic failure criteria for uniaxial loading. 
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values by Piehler [17] and those by Cooper  [18], 5 
Tsai [9] and Jackson [19] in Figs. 23 and 24, 
respectively. Fairly good coincidences are ob- 
served. 

8. C o n c l u s i o n s  0 30 60 90 
The mechanical  propert ies of  a unidirectional 0 (deg) 
fibre reinforced plastic were investigated theo- Figure 21 Comparison of calculated and experimental 
retically as well as experimentally. The or tho-  fracture criteria for uniaxial loading. 
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Figure 22 Comparison of calculated and experimental 
fracture criteria for biaxial loading. 
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Figure 23 Comparison of calculated results from Equation 
46 and experimental results by Piehler [17]. 

gonal  l inear  viscoelastic const i tut ive equat ion  
was given by the Laplace  t r ans fo rm d o m a i n  
elastic constants  which were calculated f rom the 
law of  mixture  and a s t ructural  uni t  cell. A 
l inear  fai lure cr i ter ion was p roposed  on the 
basis of  the p ropo r t i ona l  l imit  o f  the fibre and 
the ini t ia t ion o f  debonding  between fibre and 
matr ix.  The non- l inear  const i tut ive re la t ions  
were derived by  consider ing non- l inear  proper t ies  
of  the components ,  and  the stress redis t r ibut ion  
in matr ix  on account  of  debond ing  between 
fibre and matrix.  F rac tu re  condi t ions  were given 
by the assumpt ions  tha t  the compos i te  f racture 
occurs when either the longi tudina l  normal  stress 
or  the m a x i m u m  effective resul tant  stress of  

15 ~ 

10 

5 

I 
sin 0 

30 60 90 
0 (deg) 

Figure 24 Comparison of calculated results from Equa- 
tion 48 and experimental results by Cooper [18], Tsai [9] 
and Jackson [19]. 

no rma l  and shear stresses on the p lane  para l le l  
to fibre reach their  crit ical values, 

Exper imenta l  works  under  the var ious  l oad ing  
condi t ions  were made  by  use o f  bo th  uniaxia l  
and  biaxial  specimens of  cold d rawn copper  
f ibre-epoxy resin composi te  having var ious  
fibre volume fract ions and fibre directions.  Fa i r ly  
good  agreements  were observed between the  
ca lcula ted  and exper imenta l  results.  
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