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Viscoelastic behaviour of a unidirectional
fibre reinforced plastic
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The orthogonal linear viscoelastic constitutive equation is given by the Laplace transform
domain elastic constants which are calculated from the law of mixture and a structural
unit cell. Non-linear constitutive relations in high stress regions are derived by considering
non-linear properties of the components and the stress redistribution in the matrix on
account of debonding between fibre and matrix. A linear failure criterion and a fracture
criterion are also investigated theoretically. Experimental works are conducted for

uniaxial and biaxial specimens of cold-drawn copper fibre-epoxy resin composite having
various fibre volume fractions and fibre directions. Fairly good agreements are observed
between the calculated and experimental results.

1. Introduction

It is well known that the fibre reinforced
composite material shows a considerable
mechanical anisotropy depending on the orienta-
tion and volume fraction of fibres. From this
variability of anisotropy by fibre reinforcement,
it is possible to choose the optimal reinforce-
ment from the view point of material efficiency
of the composite material for the prescribed
design condition. For optimal design by use of
composite material, it is necessary to find the
constitutive relation of composite material.
Although many papers have reported on this
problem, there are few theoretical and experi-
mental results for the constitutive relation
from the start of deformation to the fracture of
the composite. Moreover, since the results are
often given by complicated expressions or
numerical calculations with digital computers,
they are not always convenient for stress analysis
of the structures.

It is a main object of this paper to find the
simple and approximately precise expression of
constitutive relation which is available for the
design purpose. Theoretical analyses are made
on the linear and non-linear viscoelastic aniso-
tropic behaviour, linear viscoelastic failure and
fracture criteria for uniaxial fibre reinforced
composite. The validity of the analytical results
is confirmed by comparison with the experi-
mental results.
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2. Linear viscoelastic behaviour

Let us assume that the matrix is a time-depen-
dent material and the fibres embedded in the
matrix are elastic materials. The macroscopic
property of the composite will then be time
dependent, and it will show a linear viscoelastic
behaviour within a low strain region. It is well
known that a linear viscoelastic problem can be
solved by the correspondence principle as an
associated elastic problem in the Laplace
transform domain. Accordingly, the orthotropic
linear viscoelastic constitutive equation for the
composite composed of linear viscoelastic
matrix and parallel elastic fibres can be deter-
mined by the Laplace transform inversion of
associated orthotropic elastic constants.

The constitutive equation in the Laplace
transform domain of an orthotropic elastic
plate, in the case of plane stress condition where
the stress co-ordinate axes coincide with the
principal axes of anisotropy, is defined as
follows:

éll ]/Ell I/El?. O '51],‘

€22> = 1/E12 l/Ezz 0 (622) (1)
’}_712 O 0 1/Gl‘l ’E12

where subscripts 11 and 22 show the directions
parallel and perpendicular to fibres respectively
(cf. Fig. 1), and the bar indicates the
Laplace transformation. For the case where the
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cos6 = |

sing=m
Figure 1 Co-ordinate system of unidirectional fibre
reinforced plate.

fibre direction makes an angle # with one of the
stress co-ordinate axis, X, the constitutive
equation can be derived from the transformation
of the co-ordinates in Equation 1. The elastic
compliance matrix of Equation 1 corresponds to
the viscoelastic compliance matrix in the
physical domain. The associated elastic con-
stants Eyy, E,5 Esp, Gy, are determined from
elastic moduli of the fibre (E;) and the matrix
(En) in the Laplace transform domain, fibre
volume fraction (Vy) and geometrical arrange-
ments of fibres.

2.1, E,,
According to many analyses and experiments
[1-4] the “law of mixture” can be used for the
Jongitudinal modulus with sufficient exactness,
ie.,

Ell = VfEf + (1 - Vf)En1 . (2)

22. E,

For the Poisson’s ratio ¥;, the validity of the law

of mixture is verified also in [2, 4], hence

3 1& _ ViEr + (1 — V)Em )
Vg Vive + (1 — Vi) ¥m ’

where ¥ and 7, are the Poisson’s ratios of fibre

and matrix in the Laplace transform domain
defined by

Elz =

€mt €t
P = - — Vi = — —— = 4
Ym é—m > Vi f-f ( )
Here em and ey denote the strains in the direc-
tions parallel and perpendicular to the loading
direction under uniaxial tensile creep of matrix
respectively, and e and ey are those for the fibre.

(b)
Model of structurat unit

(a)
Rectangular array

Figure 2 Structural unit cell for the unidirectional fibre
reinforced composite of rectangular array.

2.3. E,

Many results [4-15] have been obtained for the
transverse modulus (E,,), but the results are not
always convenient for the stress analysis of the
structures as they are given by complicated
expressions or numerical tables. A simple and
approximately precise expression of the trans-
verse modulus is derived from assuming a
structural unit cell as shown in Fig. 2 for a
rectangular array composite. Fig. 2a shows a
cross-section of the composite. The structural
unit cell is the rectangular prism of sides
a X b having a fibre of diameter 4 in the centre,
as shown by the dotted lines in Fig. 2a. The unit
cell is divided into four regions, and the strain
distribution in each region is assumed to be
approximately uniform. These four regions are
denoted as I, II, III and IV as shown in Fig. 2b.
As the cross-sectional area of the region IV must
be equal to that of fibre, i.e.,

42
77-4— = c¢?and Vi = c¥ab.

For the tensile loading in direction 22, the
equilibriums of stress among these regions are
assumed as follows:

{i) the stress of direction 22 in region I is
equal to the average stress of regions Il and IV,
ie.,

2¢ a—c¢c
a+ 65221V+ a+ 0522H= Ooal 5 *

(ii) the average stress of regions I and III is
equal to the macroscopical stress (G,,) of
direction 22, i.e.,

*The stresses in regions I, T1, TIT and IV are denoted by o, o™, 61T and o?V, respectively.
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a+c._ . 4 a-—c
2¢ 7 T a4
(1ii) the macroscopical stress of direction 11 is
zero, i.e.,
a+c)b— o _
@90,

Goolt = Gy ; 6)

bla - o) &,

+ %V =0. (7)

In Equation 7, the stress of region II (oy;5) is not
taken into consideration because of its small
value compared with the stresses in other regions.

For the above mentioned loading, the com-
patibility of the strain among the regions are
assumed as follows:

(i) the strains of direction 22 in regions II and
IV are equal because of the perfect bonding
between fibre and matrix, i.e.,

Epll = &'V 5 ®)

(1) the strain of direction 22 in region III is
equal to the average strain of regions I, Il and IV
and correspond to the macroscopic strain (&,,),
ie.,

A €t + j e T €22 T €99 ; &)

(ii1) the strains of direction 11 in regions I, III
and IV are equal to each other, i.e.,
E_11.:[ = éIIIII = E-IIIV H (10)
where the strain of direction 11 in region II
(€,,10) is neglected for the same reason stated for
Equation 7. From Equations 5 to 10 the trans-
form domain transverse modulus E,, is given
by

100

25

'l 1 Il 1 1
0 02 04 06 08 1.0
: Vi
Figure 3 Comparison of calculated results from Equation
2 and from Whitney [2] and Heaton [12].

2.4. B,

For the longitudinal shear loading, the following
equations of the stress equilibrium and strain
compatibility among the regions in the unit cell
can be derived from the same assumptions as in
the case of E,,, i.e.,

a+c a—-c¢

_ R + —2(1 = )
Epp=22 =En< 1 + a (11)
T, R}—E"_in(a+c)(b—c)+Eﬂ(a-c)+2(l__2)
Es Ef c? Vm
where
(1_ (@ + )En )_l(a—c 1 — vp?
2cEs + (@ — OFw) B\ 2¢ )T TEm

_c (1 (@ + ¢)Enp

b
For Et » Em, Ris reduced to R = bj(b — ¢) and
then,
ela + ¢)
alb — ¢)
Enab

A

1+

— (1 = )

(12)

1 1@+00 -0 c—b_ I
ZCEf 4+ (a - C)Em) (Em + Ef 2C2 ) + (1 + b VmZ) \-}nlEm

2¢ _ a— ¢ _ _
a+ c'flzlv + o CT12H = Tp,0» (13)
a-+ c _ a— ¢ _ _
2 Tiat T =T, (14)
771211 = 12"V a 5)
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b 1ot + Bylzn = Jit = J15.  (16)

From Equations 13 to 16, the transform domain
longitudinal shear modulus (G, ,) is given as

— T

(2ab — ac + ¢®) (2¢Ge/Gm + a — ¢) + cla — ¢) (a + ¢)

matrix has usuvally been given by the critical
value of the normal stress or the shear stress on
the bonded surface, or by applying the aniso-
tropic yield criterion proposed by Hill. But in the
former case, the coupling effect of the normal

612 = —12 = Gm

where G; and Gy, are the transform domain
shear moduli of the fibre and the matrix res-
pectively.

The linear viscoelastic constitutive equation
can be derived from the Laplace transform
inversion of Equation 1 for which the transform
domain moduli E,;, E,,, E,, and G,, are sub-
stituted.

The calculated results of the moduli for square
array (a = b) by Equations 2, 3,11, 12 and 17 are
compared with those by Whitney [2], Halpin
{4], Tsai [9] and Heaton [12] in Figs. 3 to 6,
where Gi/Gp, = 120, % = 0.20, ¥, = 0.35 are
assumed. Pretty good coincidences are observed
between the authors’ calculations and the other
investigators’ results.

3. Linear viscoelastic failure criteria

The linear viscoelastic failure criteria are
determined from the following two conditions,
(1) the proportional limit of the fibre, (2) the
bonding failure limit between the fibre and the
matrix. It depends on the angle § between the
direction of the fibre and that of the applied
stress which limit should be adopted to deter-
mine the failure criterion.

3.1. The criterion determined from the fibre
proportional limit

The stress of the composite in the longitudinal

direction at the proportional limit of the fibre

is given by using the law of mixture as follows:

on* = Viee* + (1 — V)ow' (18)
where o;* is the proportional limit of the fibre
and oy’ is the stress of the matrix at the pro-
portional limit of the fibre. For uniaxial tension
at an angle of 8 to the fibre direction, the linear
viscoelastic failure stress, ox*, becomes

ox* = opy%/cos?d
= {(Vior* + (I — Vi)on }/cos®8. (19)

3.2. The criterion determined from the
bonding failure limit
The bonding failure limit between fibre and
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V12 2a{(b — ¢) [2¢(Gs/Gm + a — ¢] + c(a + ¢)}
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Figure 4 Comparison of calculated results from Equation
3 and from Whitney [2] and Heaton [12].

and shear stresses is neglected, while the
physical meaning of debonding is not considered
in the latter. To include the coupling effect in the
criterion, the bonding failure is assumed to
occur when the effective resultant stress

Teff = \/[(0221)2 + (’7'121 2] (20)
on the bonding surface reaches a certain critical
value, oess™. The values of o, and 7,0 in
Equation 20 are derived by using the unit cell
of Fig. 2b as follows:

{ cla — o))(b — ¢
Gyt = b

2ab — ac + ¢
and

— + @Eb}ﬁzz )
b—c¢ Ey ¢?

(21)
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2ab

flzl =

For E; > Ep and Gi > Gn, it may be allowed
to assume En/E; and Gi/Gm to be constant ard
independent of the time. Then the stress con-
centration factors K; and K, in the physical
domain, which are defined by K; = o4,'/0,, and
K, = 7,51/11,, become

cla — ¢)/(b — ¢)

K,=1+ , 23
! 2ab — ac + & Em24a%h (23)
bh—c¢ Er ¢
K, =
2ab
cla + c)
“"”(“_C){b"” 2c(Gf/Gm)+a—c}
(24)
l |
1 )il Eq(11
40 (REez.(A_Q=)2b) — (quO(':=b) J
Eq(12 )~ Eq(12)
} _
Halpin
(RanA)
30 ]
LS 20 |
<
&
10
= . Eq(i1)~Eq(i2), )
o] 0.2 04 06 0.8 1.0

Ve

Figure 5 Comparison of calculated results from Equations
11 and 12 and from Halpin [4], Tsai [9] and Heaton
[12].

For K; = K,, these can be put K, = K, =
(K; + K,)/2 = K. From this approximation the
linear viscoelastic failure stress ox* for uniaxial

¢ +

a+c+(a—c){b—

cla + ¢)

Tig (22)
2¢(Gt/Gr) + a — c}

tension at an angle of & to the fibre direction is
given by

O'X* ES Ueff*/K N Sin@ . (25)

4. Non-linear viscoelastic behaviour

4.1. Constitutive equation in the presence of
debonding between fibre and matrix

Let us assume the non-linear viscoelastic con-
stitutive equation in the presence of debonding
in the following form,

€1 = Cyy(oy, 1) + Ciy(03s, 1)
€39 = Cpl(o11, 1) + Capl020, 1)
Y12 = Cya(T1, 1)

where Cy, Cyy, Cay, Cy, and Cy; are compliance
functions of stresses and time. For the longitu-
dinal tensile loading (a,,), both fibre and matrix
show the non-linear behaviour before fracture
of the composite; the non-linear behaviour of
the composite in high stress region will then be
predicted by the non-linear behaviour of fibre
and matrix. For both transverse loading (o,,)
and shear loading (7,,), the composite fracture
will occur in a low stress level because of the
stress concentration at the matrix-fibre boun-
dary. Hence, the deformation modes of fibre and
matrix may be linear until fracture of the
composite, and the compliance functions C,,,
C,, and C,; will be given by solving elastic
problems in the transform domain.

On the assumption that the fibre length is
infinite the contact area between the fibre and
the matrix may also be regarded as infinite, and
the deformations in direction 11 of the fibre
and the matrix will show the same value in spite
of debonding propagation between them. Hence,
the effect of debonding propagation is neglected
in determining the compliance functions C;; and
Cis-

41.1.C, (0, D)

The stress-strain relations are expressed as
follows: for the fibre,

(26)

{0 < ot < ot* €111 = gf’(O'f) R (,)7)

or* < of < o** €y = €'(0r) + €'(o1) ’

and for the matrix,
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Figure 6 Comparison of calculated results from Equation
17 and from Halpin [4], Tsai [9] and Heaton [12].

€mi; = €m'(0m, 1),
€m’(0‘m, t) + Em”(f"m,t)

(28)

In Equations 27 and 28 the asterisks (*) and (**)
denote linear failure stress and fracture stress,
respectively, and the primes () and (") linear
strain and non-linear strain, respectively. The
macroscopic strain (e;;) and stress (oy) in the
longitudinal direction are given by

€1 <
oy = Vier + (1 — Vi)om .
The compliance function (Cy;) can be deter-

mined from the relation €;; = Cy; (043, ) by using
Equation 29.

0 < om < onm™
om® < om < om** emyy

€f11 = €miy s

29

4.1.2.C,, (o, §)
The longitudinal stress-transverse strain rela-
tions are expressed as follows:
for the fibre,

0 <ot <ot €0 = — me’(09),

O‘f* < op < O‘f** €igg = — Vfo’(O'f) - %Ef”(af) .

(30)

and for the matrix,
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0 < om < om* €mgy = — vm(t)em' (om' 2)
O'm* < Om < O'm** €mog = — V(t)Enll (O'm, t)

- ‘%‘em”(o'!n, t).

31

In Equations 30 and 31 the Poisson’s ratios of the
fibre and the matrix in the non-linear region are
assumed to be 4. The macroscopic transverse
strain (ey,) and longitudinal stress (o) are
written by using law of mixture as

€33 = Vietys + (I — Vi)emss
Viey + (] - Vf)O'm .
The compliance function (Cy) can be deter-

mined from the relation €y, = Cy (044, ) by using
Equation 32.

- (32)

o =

4.1.3. C,, (0y, D)

As mentioned above, it is assumed that in the
transverse loading the composite fracture occurs
before linear failure of its components and the
longitudinal strains of the fibre and the matrix
are equal to each other. Then the compliance
function (C;,) can be calculated from
&22

—_ =

E12
where E,, is given by Equation 3.

Cis(029, 1) =

(33)

U T
T B
T u —0 33
o
P C— l
—a

Figure 7 Structural unit cell for the unidirectional fibre
reinforced composite where debonding between fibre
and matrix occurs.

4.1.4. C,, (04 1)

For the calculation where debonding between
fibre and matrix occurs, the rectangular struc-
tural unit cell of Fig. 7 is used. The stress fields
in the regions I' and IT’ of the matrix and those
in the fibres are assumed to be uniform. When
debonding occurs, the fibre acts only as an
insert and does not constrain the matrix defor-
mation in the direction of 22. Hence, the effective
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modulus of the composite in the direction of 22
can be calculated from the matrix modulus as
follows:

E,, = (1 — ¢/a)En . (34)
The strain compatibility condition under the
transverse loading is satisfied by assuming that
the longitudinal strains of fibre and matrix are
equal to the macroscopic longitudinal strain

(én), Le.,
_Smu _ Imfs _ O

E,;) E;
where &m;; and &y, denote the longitudinal
stresses of matrix and fibre which arise by the
constraint in direction 11 between fibre and
matrix. The equilibrium condition between these
stresses is

Viotin + (I — Vi)Gmyy = 0. (36)
The transverse strain, €,,, for this case is given
by

(33)

YmOmiy

D e T

(37

Using Equations 34 to 37 the transverse modulus,
E,,", is obtained from

kol L4 — 0-_22
22 — €22
= 1 — (c/a)
B ml e ViEs (38)
™ Er + a - Vf)Em
For E¢ > En, E,," is simplified to
— 1 — (¢/a) -
Ezz” = 1—(_/‘22 Em B (39)
— Pm
and Cyy(04,, 1) is calculated from
Cool0gg, t) = 522/E22” s (40)

with Equation 39.

4.1.5. Cpy (71 )
Similar to the case of E,,, the effective shear
modulus (G,,) is determined as

IHI

Gy’ ? = [1~(c/a)]Gm

(41)

~2
()

1
and then

C33(712a t) = f12/(_;12’ . (42)

4.2. Non-linear constitutive relationship in
considering the propagation of
debonding

The stress-strain curve in the case of perfect

F(0) F10)
¥k

n 0 P~
g ey Debonding
RO A

Perfect

l bonding

0 Strain

Figure 8 Stress-strain relations in the cases of perfect
bonding and debonding.

bonding is schematically shown in Fig. § by
F'(0), and that for complete debonding by
F’(0), respectively. The values of the debonding
initiating stress and the fracture stress are
indicated by o* and o**, respectively. Since the
debonding is considered to occur locally and
not to propagate instantly throughout the
composite at the debonding initiating stress o*,
the jump of the stress-strain curve from F'(o)
to F"(o) will not be observed at this stress. Hence,
it is considered that the stress-strain relation
deviates gradually from the F'(¢) curve with
increase of the debonding and finally meets the
F’(0) curve at fracture stress o** as shown by the
dashed line in Fig. 8. On the assumption of the
linear combination of F’(s) and F’(o), the con-
stitutive relation in considering the propagation
of debonding is represented as follows:

0<o<o* e = F'(o)
o** — ¢
o* < o < o** €=mF/(U)
o—o* _
+G**_U*F(O)

5. Fracture criteria

The fracture conditions are given by the assump-
tion that the composite fracture occurs when
either the longitudinal stress or the maximum
effective resultant stress of normal and shear
stresses on the plane parallel to the fibre reaches
its critical value similar to the case of the linear
failure criterion. '

5.1. Fracture by longitudinal stress

The longitudinal strength of unidirectional

brittle fibre reinforced composite can generally

be represented by the following law of mixture:
0 <Vt < Vie op** = (1 = Vo™, (43)
Vie< Vi< 1 0'11*>X< = Vigp**

+ (1 - Mow”, (44)
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where oy," 1s the matrix stress corresponding to
the fibre fracture strain, and Vi is the critical
fibre volume fraction expressed by

Vie = (on** —~ om")/(0t** + om™** — om").
For the ductile fibre, however, the bonding
between the fibre and the matrix prevents
“necking” of fibre and, hence, the tensile test
result of a single fibre cannot be used as the
fibre behaviour in the composite. For the ductile
fibre composite, Mileiko [16] has proposed the
following modified equation:

o = Vidog** + (1 — VA on**, (45)
where A’ and A” are the functions of fibre volume
fraction (¥3). Actual applied results of Equation
45 for the ductile fibre composite show an almost
linear relation with Vi Therefore, the longitu-
dinal fracture criterion is expressed approxi-
mately by

o™ * = Viee** + (1 — Vi)on™*. (46)
5.2. The fracture by the maximum effective
resultant stress of normal and shear
stresses
The effective resultant stress of normal and shear
stresses in the structural unit cell of Fig. 7 is
maximum in region II'. Hence, denoting the
critical value of effective resultant stress as aet**,
the fracture condition is given by

x/[(czznl)z + (1.12[1/)2] = oert*¥* .

47

"""""""""""""" "““jThermo

By defining the stress concentration factor, K’,
as
I

K = T2 _
Ta2 T12

!
715™

= af(a — ¢)

the fracture stress (ox**) in the uniaxial tension
with fibre orientation (6) is expressed as follows:

ox** = gepr**/K' - sinf = 0,,**/sinf . (48)

6. Experimental procedures and results

The tests under creep, relaxation, constant
strain-rate and constant load rate conditions are
conducted by the biaxial tensile testing machine
having a closed loop feedback control system.
The temperature during the experiment is kept
at 30°C by using an environmental chamber
attached to the testing machine. A schematic
diagram of the biaxial tensile testing apparatus
with various accessories is shown in Fig. 9.

The material used in the experiments is the
composite of epoxy resin reinforced unidirec-
tionally by cold-drawn copper wires of 0.8 mm
diameter. This composite is produced by pouring
the epoxy resin on the copper wires stretched at
equal intervals on the glass plate and curing at
60°C for 2 h. The volume fraction of the wire is
controlled by changing the intervals between the
wires. Test specimens are cut from this com-
posite plate. The uniaxial tensile specimen has a
parallel part of 120 mm length and 50 mm

regulator

e e e e e - —

Terp Ox Ex Oy & Fluid
Power
Data recorder source

Figure 9 Schematic diagram of testing system.
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(8=0") Constant strainrate tensile test

Figure 10 Stress-strain relations under constant strain-
rate. (8§ = 0°)

breadth, and the biaxial tensile specimen has a
square region of 100 mm x 100 mm in the
central part.

Experimental results are given in Figs. 10 to

16. Fig. 10 shows longitudinal stress-strain
relations under the constant strain-rate tensile
tests for copper wire, epoxy resin and their
composites with various volume fractions. Figs.
11 and 12 are creep-recovery test results of the
composites with fibre volume fraction V¢ = 0.13
and 0.25, respectively. The relation between the
creep compliance and the stress level is plotted
in Fig. 13 from the creep test results of the
specimen with ¥; = 0.13 and 6 = 30°. The
linearity can be clearly seen in low stress levels
while non-linearity becomes remarkable for high
stress levels. Figs. 14 and 15 show the constant
load rate tensile test results of the composites
with V; = 0.13 and V; = 0.25, respectively.
Results of the biaxial tensile tests under constant
stress ratios are given in Fig. 16, where the
vertical ordinate expresses the equivalent stress
of Mises type.

7. The comparisons betwezan theoretical
and experimental results

From the results of the constant strain-rate
tensile tests of fibre and matrix and the creep
test of matrix, the creep compliances and
Poisson’s ratios of fibre and matrix are found as
follows:
Ji(r) = 1/11000 mm? kg—!
vi(t) = 0.33
Ju(2) = 0.00363 — 0.00025¢-2-0¢

— 0.00050e~°-948¢ mm?2 kg1
vm(t) = 0.355.

o
2
b a0 >
e 4« a2 » a4 &<
Q@
D
\<Q)
<

=
¢ 0003 T e
S
T et . '
- - 1
0.002 : ‘
o [ S .
(&}
c |
g
5
£
o
(]
jo R
[
v
(]

0 10

20
Time t (min)

30 40 50 80

(Vi=013) Creep-recovery test

Figure 11 Creep-recovery curves (Vi = 0.13).
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Figure 12 Creep-recovery curves (Vi = 0.25).
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Figure 13 Creep compliance versus stress for various times (V: = 0.13, 8 = 30°).

Here the creep compliance of fibre is given as the

> ¥m = S JIm(?)vm(?)/S Jmlt) = 0.355
constant value since the time-dependency in the

deformation of the fibre is considered negli-
gible, and times scale in the creep compliance are
indicated by minutes. Then the transform domain
elastic constants for fibre and matrix become

E: = 1/SJi(r) = 11000 (kg mm~2)
7 = ST(w(1)/S Ji(t) = 0.33
Gi = Ey2(1 + ) = 4135 (kg mm~2)
En = 1/SJu(t)

_ 347 S+ 20)(S + 0.046) (ke mm-?)

(S + 2.17) (S + 0.053)
600

- 128 (S + 2.0) (S + 0.046)
= 20 ST 207 (S + 0.053)

(kg mm~2).

The constitutive relations calculated by using
these transform domain elastic constants and
geometrical parameters g, b and ¢ are shown by
the lines in Figs. 11, 12, 14 to 16. The calculated
stress-strain relations give essentially straight
lines in the low stress region and show good
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Figure 14 Stress-strain relations under constant stress rate. (V; = 0.13, do/ds = 0.01 kg mm~% sec~1)

agreements with the experimental results. The
linear viscoelastic failure stress is experimentally
defined as the stress point where the gradient of
stress-strain curve begins to change abruptly.
The relations between the linear viscoelastic
failure stress and the fibre orientation are mea-
sured for two kinds of uniaxial tensile test
specimens of Vi 0.25 and V; = 0.13, and
compared with their calculated results by Equa-
tions 18 to 20 and 25 as shown in Fig. 17. Fig.
18 shows the comparison between the observed
and calculated values of the linear failure stress
for the biaxial tensile tests. In these comparisons,
the following values are used for the propor-
tional limit of the fibre and the effective resultant
stress at the debonding initiation:

o¥ =270 kgmm~2,

gert* = 1.14 kgmm~—2,

To calculate the stress-strain relationship of
the composite in the non-linear region, the
stress-strain curves of fibre and matrix are
represented by the following forms:
for the fibre,

0 < of < 27(kg mm~%)

ot
€11 = ff’(cf) = Ef ’

vios

E

€fgg = — Vféf’(f’f) =

601
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TABLE I Explanation of stress levels represented by
lines.

Debonding initiation stress.

Fracture stress determined
trom the criterion62).

At this stress the fibre reaches
s proportional limit

Fracture stress determined
from the criterjon 61).

27 < oy < 43(kg mm~2)

(et = e(01) + &(01)

43—
o 0.00105 log ——'
£

€2y = — veer'(or) — § €t'(0n)
vio — Ot

t 43
L = F + 0.00053 log ——— >

16

and for the matrix,

0 < om < 3.5(kg mm—2)

Om

- _ T ) ==>
€mi1 €m (O'm ) Em
—_— ¥y O
€mgs = — Vm(t)em'(Om, 1) = — =
3.5 < om < 6.3 (kg mm™?)
€myy = €ml((rma )+ Emﬁ(am’ t)
, 6.3 — oy
= €m'(om, 1) — 0.0022 log 53
\) €moz = — Vm{f)em'(0m, 1) — % ex"(om, 1)
6.3 —
lL = = v(t)em'(om, 1) + 0.0011 Iog ==

The relations given by the above equations are
shown in Fig. 19 by the solid lines. In these
relations, the tensile strength of copper wire
without necking is assumed to be o;** = 43.0
kg mm~2. The calculated results of the stress-
strain curves in non-linear regions are shown in
Figs. 14 to 16 by the dashed lines. Figs. 20 and
21 show the comparisons between the calculated
and experimental results for the variations of
the unidirectional tensile strength with respect
to the fibre volume fractions and fibre orienta-
tions, respectively. Fig. 22 shows the comparison
for the biaxial tensile strength. In these com-
parisons an experimental average value gep™*
= 3.20 kg mm~2 is adopted for the maximum
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001
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effective resultant siress cepr®**. The calculated
results of linear failure and fracture stress levels
are shown in Figs. 14 to 16 by the thin lines
(cf. Table I). The changes of the fracture
stress with respect to fibre volume fractions and
fibre orientations are calculated by Equations 46
and 48, and compared with the experimental
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Figure 16 Equivalent stress-strain relations under the
biaxial loading with constant stress ratio.

Figure 17 Comparison of calculated and experimental
linear viscoelastic failure criteria for uniaxial loading.
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Figure 19 Stress-strain curves of fibre and matrix.

values by Piehler [17] and those by Cooper [18],
Tsai [9] and Jackson [19] in Figs. 23 and 24,
respectively. Fairly good coincidences are ob-

served. ’

a J
8. Conclusions 0 30 60 90
The mechanical properties of a unidirectional 0 (deg)

ﬁbte reinforced plastic were investigated theo-  Figure 21 Comparison of calculated and experimental
retically as well as experimentally. The ortho- fracture criteria for uniaxial loading.
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Figure 22 Comparison of calculated and experimental
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Figure 23 Comparison of calculated results from Equation
46 and experimental results by Piehler [171.

gonal linear viscoelastic constitutive equation
was given by the Laplace transform domain
elastic constants which were calculated from the
law of mixture and a structural unit cell. A
linear failure criterion was proposed on the
basis of the proportional limit of the fibre and
the initiation of debonding between fibre and
matrix. The non-linear constitutive relations
were derived by considering non-linear properties
of the components, and the stress redistribution
in matrix on account of debonding between
fibre and matrix. Fracture conditions were given
by the assumptions that the composite fracture
occurs when either the longitudinal normal stress
or the maximum effective resultant stress of

sin g
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Figure 24 Comparison of calculated results from Equa-
tion 48 and experimental results by Cooper {18], Tsai [9]
and Jackson [19].

normal and shear stresses on the plane parallel
to fibre reach their critical values.

Experimental works under the various loading
conditions were made by use of both uniaxial
and biaxial specimens of cold drawn copper
fibre-epoxy resin composite having various
fibre volume fractions and fibre directions. Fairly
good agreements were observed between the
calculated and experimental results.
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